Advertisements
Advertisements
Question
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
Solution
`4+4 tan^2 theta `
= `4(1+ tan ^2 theta)`
=`4 sec^2 theta `
=`4/ cos^2 theta`
=`4/(2/3)^2`
=`4/((4/9))`
=`(4xx9)/4`
=9
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.