English

Prove the Following Trigonometric Identities. (Cot^2 A(Sec a - 1))/(1 + Sin A) = Sec^2 a ((1 - Sin A)/(1 + Sec A)) - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`

Solution

We have to prove `(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`

We know that `sin^2 A = cos^2 A = 1`

`So,

`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 = sec A))`

`= (cos^2 A/sin^2 A(1/cos A - 1))/(1 + sin A)`

`= (cos^2 A/sin^2 A (1 - cos A)/(cos A))/(1 + sin A)`

`= (cos A(1 - cos A))/(sin^2 A(1 + sin A))`

`= (cos A (1 - cos A))/((1 - cos^2 A)(1 + sin A))`

`= (cos A (1 - cos A))/((1 - cos A)(1 + cos A)(1 + sin A))`

`= cos A/((1 + cos A)(1 + sin A))`

`= (1/sec A)/((1 + 1/sec A)(1 + sin A))`

`= (1/sec A)/(((sec A + 1)/sec A)) (1 + sin A)`

`= 1/((sec A +1)(1 + sin A))`

Multiplying both the numerator and denominator by (1 - sin A), we have

`= (1 - sin A)/((sec A + 1)(1 + sin A)(1 - sin A))`

`= (1 - sin A)/((sec A + 1)(1 - sin^2 A))`

`= (1 - sin A)/((sec A + 1)cos^2 A)`

`= sec^2 A ((1 - sin A))/((sec A + 1))`

`= sec^2 A ((1 - sin A)/(1 + sec A))`

Hence proved.

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 67 | Page 46

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`

 


Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


Prove the following trigonometric identities

sec4 A(1 − sin4 A) − 2 tan2 A = 1


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


If `cosec  theta = 2x and cot theta = 2/x ," find the value of"  2 ( x^2 - 1/ (x^2))`


Prove that:

`(sin^2θ)/(cosθ) + cosθ = secθ`


Prove that:

Sin4θ - cos4θ = 1 - 2cos2θ


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity : 

`(1 + tan^2θ)sinθcosθ = tanθ`


If x sin3θ + y cos3 θ = sin θ cos θ  and x sin θ = y cos θ , then show that x2 + y2 = 1.


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


Choose the correct alternative:

cos θ. sec θ = ?


Choose the correct alternative:

1 + cot2θ = ? 


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3


If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.


(1 – cos2 A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×