Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Solution
We have to prove `(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
We know that `sin^2 A = cos^2 A = 1`
`So,
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 = sec A))`
`= (cos^2 A/sin^2 A(1/cos A - 1))/(1 + sin A)`
`= (cos^2 A/sin^2 A (1 - cos A)/(cos A))/(1 + sin A)`
`= (cos A(1 - cos A))/(sin^2 A(1 + sin A))`
`= (cos A (1 - cos A))/((1 - cos^2 A)(1 + sin A))`
`= (cos A (1 - cos A))/((1 - cos A)(1 + cos A)(1 + sin A))`
`= cos A/((1 + cos A)(1 + sin A))`
`= (1/sec A)/((1 + 1/sec A)(1 + sin A))`
`= (1/sec A)/(((sec A + 1)/sec A)) (1 + sin A)`
`= 1/((sec A +1)(1 + sin A))`
Multiplying both the numerator and denominator by (1 - sin A), we have
`= (1 - sin A)/((sec A + 1)(1 + sin A)(1 - sin A))`
`= (1 - sin A)/((sec A + 1)(1 - sin^2 A))`
`= (1 - sin A)/((sec A + 1)cos^2 A)`
`= sec^2 A ((1 - sin A))/((sec A + 1))`
`= sec^2 A ((1 - sin A)/(1 + sec A))`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
Choose the correct alternative:
cos θ. sec θ = ?
Choose the correct alternative:
1 + cot2θ = ?
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
(1 – cos2 A) is equal to ______.