Advertisements
Advertisements
Question
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Solution
2 `(x^2 - 1/(x^2))`
=`4/2(x^2 - 1/(x^2))`
=`1/2(4x^2 - 4/(x^2))`
=`1/2 [(2x)^2- (2/x)^2]`
=`1/2 [( cosec theta )^2 - (cot theta)^2]`
=`1/2 (cosec ^2 theta - cot^2 theta)`
=`1/2 (1)`
=`1/2`
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
Given that sin θ = `a/b`, then cos θ is equal to ______.
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`