Advertisements
Advertisements
प्रश्न
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
उत्तर
2 `(x^2 - 1/(x^2))`
=`4/2(x^2 - 1/(x^2))`
=`1/2(4x^2 - 4/(x^2))`
=`1/2 [(2x)^2- (2/x)^2]`
=`1/2 [( cosec theta )^2 - (cot theta)^2]`
=`1/2 (cosec ^2 theta - cot^2 theta)`
=`1/2 (1)`
=`1/2`
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
From the figure find the value of sinθ.
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Find the value of sin 30° + cos 60°.
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Choose the correct alternative:
1 + cot2θ = ?
If 1 – cos2θ = `1/4`, then θ = ?
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)