हिंदी

If `Cot Theta = 1/ Sqrt(3) , "Write the Value Of" ((1- Cos^2 Theta))/((2 -sin^2 Theta))` - Mathematics

Advertisements
Advertisements

प्रश्न

If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`

उत्तर

We have , 

 `cot theta = 1/ sqrt(3)`

  ⇒` cot theta = cot (π/3)`

  ⇒`theta = π/3`

 Now , 

     `((1- cos^2 theta))/((2 - sin^2 theta))`

    = `(1- cos ^2(π/3))/( 2 - sin ^2 ( π/ 3))` 

    =` (1- (1/2)^2)/(2-(sqrt(3)/2)^2)`

    =` ((1/1 - 1/4))/((2/1-3/4))`

    =`((3/4))/((5/4))`

    =`3/5`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 3

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 3 | Q 22

संबंधित प्रश्न

Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


Prove the following trigonometric identities.

`(tan A + tan B)/(cot A + cot B) = tan A tan B`


If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ. 


If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\] 


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to 


Prove the following identity :

secA(1 - sinA)(secA + tanA) = 1


If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`


Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.


Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


Prove that sec2θ – cos2θ = tan2θ + sin2θ


If 2sin2θ – cos2θ = 2, then find the value of θ.


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×