Advertisements
Advertisements
प्रश्न
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
उत्तर
We have ,
`cot theta = 1/ sqrt(3)`
⇒` cot theta = cot (π/3)`
⇒`theta = π/3`
Now ,
`((1- cos^2 theta))/((2 - sin^2 theta))`
= `(1- cos ^2(π/3))/( 2 - sin ^2 ( π/ 3))`
=` (1- (1/2)^2)/(2-(sqrt(3)/2)^2)`
=` ((1/1 - 1/4))/((2/1-3/4))`
=`((3/4))/((5/4))`
=`3/5`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove that sec2θ – cos2θ = tan2θ + sin2θ
If 2sin2θ – cos2θ = 2, then find the value of θ.
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`