Advertisements
Advertisements
प्रश्न
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
उत्तर
L.H.S = `(sintheta + tantheta)/cos theta`
= `sintheta/costheta + tantheta/costheta`
= tan θ + tan θ sec θ
= tan θ(1 + sec θ)
= R.H.S
∴ `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
APPEARS IN
संबंधित प्रश्न
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
(1 – cos2 A) is equal to ______.