हिंदी

If `Sin Theta = 1/2 , " Write the Value Of" ( 3 Cot^2 Theta + 3).` - Mathematics

Advertisements
Advertisements

प्रश्न

If  `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`

उत्तर

As , `sin theta = 1/2 `

So , `cosec theta = 1/ sin theta = 2     ........(i)`

Now , 

`3 cot ^2 theta + 3 `

              = `3 ( cot^2 theta + 1)`

              =`3 cosec^2 theta`

              =` 3(2)^2            [ Using (i)]`

              =3(4)

               =12

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 3

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 3 | Q 16

संबंधित प्रश्न

`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`

 


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`


`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`


`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`


` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`


If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


If `sec theta + tan theta = x,"  find the value of " sec theta`


If tanθ `= 3/4` then find the value of secθ.


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


Prove the following identity : 

`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)


Choose the correct alternative:

cos 45° = ?


`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?


Prove that cot2θ × sec2θ = cot2θ + 1


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×