Advertisements
Advertisements
प्रश्न
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
उत्तर
As , `sin theta = 1/2 `
So , `cosec theta = 1/ sin theta = 2 ........(i)`
Now ,
`3 cot ^2 theta + 3 `
= `3 ( cot^2 theta + 1)`
=`3 cosec^2 theta`
=` 3(2)^2 [ Using (i)]`
=3(4)
=12
APPEARS IN
संबंधित प्रश्न
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If `sec theta + tan theta = x," find the value of " sec theta`
If tanθ `= 3/4` then find the value of secθ.
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Choose the correct alternative:
cos 45° = ?
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
Prove that cot2θ × sec2θ = cot2θ + 1
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S