Advertisements
Advertisements
प्रश्न
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
उत्तर
L.H.S = sin4A – cos4A
= (sin2A)2 – (cos2A)2
= (sin2A + cos2A) (sin2A – cos2A) .....[∵ a2 – b2 = (a + b)(a – b)]
= 1(sin2A – cos2A) .....[∵ sin2A + cos2A = 1]
= sin2A – cos2A
= 1 – cos2A – cos2A .....[sin2A = 1 – cos2A]
= 1 – 2cos2A
= R.H.S
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.