हिंदी

Sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below. Activity: L.H.S = □ = (sin2A + cos2A) (□) = 1(□) .....[sin2A+□=1] = □ – cos2A .....[sin2A = 1 – cos2A] = □ = R.H.S - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S

रिक्त स्थान भरें
योग

उत्तर

L.H.S = sin4A – cos4A 

= (sin2A)2 – (cos2A)2

 = (sin2A + cos2A) (sin2A – cos2A)    .....[∵ a2 – b2 = (a + b)(a – b)]

= 1(sin2A – cos2A)       .....[∵ sin2A + cos2A = 1]

= sin2A – cos2A

= 1 – cos2A – cos2A    .....[sin2A = 1 – cos2A]

= 1 – 2cos2A

= R.H.S

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.3 (A)

संबंधित प्रश्न

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.


As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.


Prove the following trigonometric identities

`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) =  (1 + sin^2 theta)/(1 - sin^2 theta)`


if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.


If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ. 


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove the following identity : 

`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`


If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that   `x^2 + y^2 + z^2 = r^2`


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


Prove that:  `1/(sec θ - tan θ) = sec θ + tan θ`.


Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ


Prove that cot2θ – tan2θ = cosec2θ – sec2θ 


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


Complete the following activity to prove:

cotθ + tanθ = cosecθ × secθ

Activity: L.H.S. = cotθ + tanθ

= `cosθ/sinθ + square/cosθ`

= `(square + sin^2theta)/(sinθ xx cosθ)`

= `1/(sinθ xx  cosθ)` ....... ∵ `square`

= `1/sinθ xx 1/cosθ`

= `square xx secθ`

∴ L.H.S. = R.H.S.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×