Advertisements
Advertisements
प्रश्न
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
उत्तर
`= (a cos^3 theta + 3a cos theta sin^2 theta + a sin^3 theta + 3a cos^2 theta sin theta)^(3/2) + (a cos^3 theta + 3a cos theta sin^2 theta - a sin^3 theta - 3a cos^2 theta sin theta)^(2/3)`
`= a^(1/3) (cos^3 theta + 3 cos theta sin^2 theta + sin^3 theta + 3 cos^2 theta sin theta)^(2/3) + a^(2/3) (cos^3 theta + 3 cos theta sin^2 theta + sin^3 theta - 3 cos^2 theta sin theta)^(2/3)`
`= a^(1/3) [(cos theta + sin theta)^3]^(2/3) + a^(2/3) (cos theta - sin theta)^3]^(2/3)`
`= a^(2/3) [(cos theta + sin theta)^2] + a^(2/3) (cos theta - sin theta)^2`
`= a^(2/3) [cos^2 theta + sin^2 theta - 2sin theta cos theta]`
`= a^(2/3) [cos^2 theta + sin^2 theta + 2 sin theta cos theta] +_ a^(2/3) [cos^2 theta + sin^2 theta - 2 sin theta cos theta]`
`= a^(2/3) [1 + 2 sin theta cos theta] + a^(2/3)[1 - 2 sin theta cos theta]`
`= a^(2/3) [1 + 2 sin theta cos theta + 1 - 2 sin theta cos theta]`
`= a^(1/3) (1 + 1) = 2a^(2/3)`
R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Define an identity.
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
sin2θ + sin2(90 – θ) = ?
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.