Advertisements
Advertisements
प्रश्न
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
उत्तर
Given:
sin A + cos A = m and sec A + cosec A = n
Consider L.H.S = n (m2 – 1)
= `(secA + cosecA)[(sinA + cosA)^2 - 1]`
= `(1/cosA + 1/sinA)[sin^2A + cos^2A + 2sinAcosA - 1]`
= `((cosA + sinA)/(sinAcosA))(1 + 2sinAcosA - 1)`
= `((cosA + sinA))/(sinAcosA)(2sinAcosA)`
= 2(sin A + cos A)
= 2 m = R.H.S
APPEARS IN
संबंधित प्रश्न
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1