Advertisements
Advertisements
प्रश्न
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
उत्तर
L.H.S = (m2 + n2) cos2 β
= `((cos^2 alpha)/(cos^2 beta) + (cos^2 alpha)/(sin^2 beta))cos^2 beta`
= `((cos^2 alpha sin^2 beta + cos^2 alpha cos^2 beta)/(cos^2 beta sin^2 beta))cos^2 beta`
= `(cos^2 alpha (sin^2 beta + cos^2 beta) cos^2 beta)/(cos^2 beta sin^2 beta)`
= `(cos^2 alpha (1))/(sin^2 beta)`
= `((cos alpha)/sin beta)^2` = n2
L.H.S = R.H.S
⇒ ∴ (m2 + n2) cos2 β = n2
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α