Advertisements
Advertisements
प्रश्न
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
उत्तर
= `1/("cosecA" - cot"A") - 1/sin"A"`
= `("cosec"^2"A" - cot^2"A")/("cosecA" - cot"A") - "cosecA"`
= `(("cosecA" - cot"A")("cosecA" + cot"A"))/("cosecA" - cot"A") - "cosecA"`
cosecA + cotA − cosecA
= cotA
R.H.S. = `1/sin"A" - 1/("cosecA" + cot"A")`
= `"cosecA" - (("cosec"^2"A" - cot"A")("cosecA" + cot"A"))/("cosecA" + cot"A")`
= cosecA − cosecA + cosecA
= cotA
= L.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.