Advertisements
Advertisements
Question
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Solution
= `1/("cosecA" - cot"A") - 1/sin"A"`
= `("cosec"^2"A" - cot^2"A")/("cosecA" - cot"A") - "cosecA"`
= `(("cosecA" - cot"A")("cosecA" + cot"A"))/("cosecA" - cot"A") - "cosecA"`
cosecA + cotA − cosecA
= cotA
R.H.S. = `1/sin"A" - 1/("cosecA" + cot"A")`
= `"cosecA" - (("cosec"^2"A" - cot"A")("cosecA" + cot"A"))/("cosecA" + cot"A")`
= cosecA − cosecA + cosecA
= cotA
= L.H.S.
APPEARS IN
RELATED QUESTIONS
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
`(sec^2 theta-1) cot ^2 theta=1`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4