Advertisements
Advertisements
Question
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Options
1
2
4
0
Solution
The given expression is
`(1+cot θ-cosec θ )(1+tan θ+sec θ)`
Simplifying the given expression, we have
`(1+cot θ-cosec θ)(1+tan θ+sec θ)`
=`(1+cos θ/sin θ-1/sin θ)(1+sin θ/cos θ+1/cos θ)`
= `(sin θ+cos θ-1)/sin θxx (cos θ+sin θ+1)/cos θ`
= `((sin θ+cos θ-1)(cos θ+sin θ+1))/(sin θcos θ)`
=`({(sin θ+cos θ)-1}{(sin θ+cos θ)+1})/(sin θ cos θ)`
=`((sin θ+cos θ)^2-(1)^2)/(sin θ cos θ)`
=`((sin θ+cos θ)^2-(1)^2)/(sin θ cos θ)`
=`((sin^2 θ+cos^2θ+2 sin θcos θ)-1)/(sin θ cos θ)`
=`((sin ^2θ+cos^2θ)+2 sinθ cos θ-1)/(sin θcos θ)`
= `(1+2 sin θ cosθ-1)/(sinθ cos θ)`
=`( 2 sin θ cos θ)/(sin θ cos θ)`
=`2`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
From the figure find the value of sinθ.
If tanθ `= 3/4` then find the value of secθ.
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
If sin θ = `1/2`, then find the value of θ.
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Choose the correct alternative:
Which is not correct formula?
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
Prove that cot2θ × sec2θ = cot2θ + 1
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.