Advertisements
Advertisements
Question
If sin θ = `1/2`, then find the value of θ.
Solution
sin θ = `1/2`
`sin 30^circ = 1/2` ................ [using trignometric table]
∴ θ = 30°
APPEARS IN
RELATED QUESTIONS
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Prove that:
`cosA/(1 + sinA) = secA - tanA`
cosec4θ − cosec2θ = cot4θ + cot2θ
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
If `sec theta = x ,"write the value of tan" theta`.
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
If 2sin2β − cos2β = 2, then β is ______.
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.