Advertisements
Advertisements
Question
If `sec theta = x ,"write the value of tan" theta`.
Solution
As , `tan^2 theta = sec^2 theta -1 `
So, `tan theta = sqrt( sec^2 theta -1 ) = sqrt( x^2 -1)`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove that `cosA/(1+sinA) + tan A = secA`
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
(i)` (1-cos^2 theta )cosec^2theta = 1`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
If sec θ = `25/7`, then find the value of tan θ.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.