Advertisements
Advertisements
Question
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
Solution
LHS = `(sin"A"/cos"A")/(1 - cos"A"/sin"A") + (cos"A"/sin"A")/(1 - sin"A"/cos"A")`
= `(sin"A" sin"A")/(cos"A"(sin"A" - cos"A")) + (cos"A" cos"A")/((cos"A" - sin"A") sin"A"`
= `1/((sin"A" - cos"A")) [(sin^2"A")/cos"A" + (cos^2"A")/(-sin"A")]`
= `(sin^3"A" - cos^3"A")/(sin"A".cos"A"(sin"A" - cos"A"))`
= `((sin"A" - cos"A")(sin^2"A" + cos^2"A" + sin"A". cos"A"))/(sin"A". cos"A"(sin"A" - cos"A")`
= `(1 + sin"A". cos"A")/(sin"A".cos"A")`
= `1/(sin"A".cos"A") + (sin"A".cos"A")/(sin"A".cos"A")`
= `1/sin"A" . 1/cos"A"+ 1`
= sec A.cosec A + 1
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Find the value of ( sin2 33° + sin2 57°).
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.