Advertisements
Advertisements
प्रश्न
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
उत्तर
LHS = `(sin"A"/cos"A")/(1 - cos"A"/sin"A") + (cos"A"/sin"A")/(1 - sin"A"/cos"A")`
= `(sin"A" sin"A")/(cos"A"(sin"A" - cos"A")) + (cos"A" cos"A")/((cos"A" - sin"A") sin"A"`
= `1/((sin"A" - cos"A")) [(sin^2"A")/cos"A" + (cos^2"A")/(-sin"A")]`
= `(sin^3"A" - cos^3"A")/(sin"A".cos"A"(sin"A" - cos"A"))`
= `((sin"A" - cos"A")(sin^2"A" + cos^2"A" + sin"A". cos"A"))/(sin"A". cos"A"(sin"A" - cos"A")`
= `(1 + sin"A". cos"A")/(sin"A".cos"A")`
= `1/(sin"A".cos"A") + (sin"A".cos"A")/(sin"A".cos"A")`
= `1/sin"A" . 1/cos"A"+ 1`
= sec A.cosec A + 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
If `sec theta + tan theta = x," find the value of " sec theta`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.