Advertisements
Advertisements
प्रश्न
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
उत्तर
L.H.S:`(1+(cos A)/(sinA)-1/(sinA))(1+(sinA)/(cosA)+1/(cosA))`
=`((sinA+cosA-1)/sinA)((cosA+sinA+1)/(cos A))`
=`((sinA+cosA)^2-(1)^2)/(sin A. cos A)`
=`(sin^2A +cos^2A+2sinA.cosA-1)/(sinA.cosA)`
=`(1+2sinA.cosA-1)/(sinA.cosA)`
=2
Hence, L.H.S =R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
The value of sin2 29° + sin2 61° is
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
Prove that sin4A – cos4A = 1 – 2cos2A
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.