Advertisements
Advertisements
प्रश्न
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
उत्तर
L.H.S. = sec2 A . cosec2 A
= `1/(cos^2A) * 1/(sin^2A)`
= `1/(cos^2A sin^2A)`
= `(sin^2A + cos^2A)/(cos^2A sin^2A)`
= `1/(cos^2A) + 1/(sin^2A)`
= sec2 A + cosec2 A
= 1 + tan2 A + 1 + cot2 A ...(∵ sec2 A = 1 + tan2 A and cosec2 A = 1 + cot2 A)
= tan2 A + cot2 A + 2 = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?