Advertisements
Advertisements
प्रश्न
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
उत्तर
L.H.S. = (sin A + cosec A)2 + (cos A + sec A)2
= sin2 A + cosec2 A + 2 sin A cosec A + cos2 A + sec2 A + 2 cos A sec A
= `sin^2A + cosec^2A + 2sinA xx 1/sinA + cos^2A + sec^2A + 2cosA xx 1/cosA`
= sin2 A + cos2 A + cosec2 A + sec2 A + 2 + 2 ...(∵ sin2 A + cos2 A = 1)
= 1 + cosec2 A + sec2 A + 4
= (1 + cot2 A) + (1 + tan2 A) + 5 ...[∵ cosec2 A = 1 + cot2 A and sec2 A = 1 + tan2 A]
= 1 + cot2 A + 1 + tan2 A + 5
= 7 + tan2 A + cot2 A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
If sin θ = `1/2`, then find the value of θ.
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?