Advertisements
Advertisements
Question
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Solution
L.H.S. = (sin A + cosec A)2 + (cos A + sec A)2
= sin2 A + cosec2 A + 2 sin A cosec A + cos2 A + sec2 A + 2 cos A sec A
= `sin^2A + cosec^2A + 2sinA xx 1/sinA + cos^2A + sec^2A + 2cosA xx 1/cosA`
= sin2 A + cos2 A + cosec2 A + sec2 A + 2 + 2 ...(∵ sin2 A + cos2 A = 1)
= 1 + cosec2 A + sec2 A + 4
= (1 + cot2 A) + (1 + tan2 A) + 5 ...[∵ cosec2 A = 1 + cot2 A and sec2 A = 1 + tan2 A]
= 1 + cot2 A + 1 + tan2 A + 5
= 7 + tan2 A + cot2 A = R.H.S.
APPEARS IN
RELATED QUESTIONS
`(sec^2 theta-1) cot ^2 theta=1`
sec4 A − sec2 A is equal to
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.