English

Prove the following identities: (sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A - Mathematics

Advertisements
Advertisements

Question

Prove the following identities:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A

Sum

Solution

L.H.S. = (sin A + cosec A)2 + (cos A + sec A)2

= sin2 A + cosec2 A + 2 sin A cosec A + cos2 A + sec2 A + 2 cos A sec A

= `sin^2A + cosec^2A + 2sinA xx 1/sinA + cos^2A + sec^2A + 2cosA xx 1/cosA`

= sin2 A +  cos2 A + cosec2 A + sec2 A + 2 + 2  ...(∵ sin2 A + cos2 A = 1)

= 1 + cosec2 A + sec2 A + 4

= (1 + cot2 A) + (1 + tan2 A) + 5  ...[∵ cosec2 A = 1 + cot2 A and sec2 A = 1 + tan2 A]

= 1 + cot2 A + 1 + tan2 A + 5

= 7 + tan2 A + cot2 A = R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometrical Identities - Exercise 21 (A) [Page 324]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 21 Trigonometrical Identities
Exercise 21 (A) | Q 21 | Page 324
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×