Advertisements
Advertisements
Question
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Solution
L.H.S. = `(secA - tanA)/(secA + tanA)`
= `(secA - tanA)/(secA + tanA) xx (secA - tanA)/(secA - tanA)`
= `(secA - tanA)^2/(sec^2A - tan^2A)`
= `(sec^2A + tan^2A - 2secAtanA)/1`
= 1 + tan2 A + tan2 A – 2 sec A tan A
= 1 – 2 sec A tan A + 2 tan2 A = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
Choose the correct alternative:
tan (90 – θ) = ?