Advertisements
Advertisements
Question
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Solution
`sqrt(cosec^2q - 1) = "cosq cosecq"`
`sqrt(cosec^2q - 1) = sqrt(cot^2q) (Q cosec^2q - 1 = cot^2q)`
= `cotq = cosq/sinq = cosq . 1/sinq`
= `"cosq cosecq"`
APPEARS IN
RELATED QUESTIONS
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Write the value of tan10° tan 20° tan 70° tan 80° .
From the figure find the value of sinθ.
If sec θ = `25/7`, then find the value of tan θ.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.