Advertisements
Advertisements
Question
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Solution
LHS = `(cotA - cosecA)^2`
= `[cosA/sinA - 1/sinA]^2`
= `[(cosA - 1)/sinA]^2`
= `(cosA - 1)^2/sin^2A = (cosA - 1)^2/(1 - cos^2A)`
= `(-(1 - cosA))^2/((1 - cosA)(1 + cosA)) = ((1 - cosA)(1 - cosA))/((1 - cosA)(1 + cosA))`
= `(1 - cosA)/(1 + cosA)`
APPEARS IN
RELATED QUESTIONS
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
If `secθ = 25/7 ` then find tanθ.
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq