Advertisements
Advertisements
Question
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
Solution
`(1+ tan^2 theta )(1+ sin theta )(1- sintheta)`
=` sec^2 theta (1- sin^2 theta )`
=`1/ cos^2 theta xx cos^2 theta`
= 1
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Write the value of tan1° tan 2° ........ tan 89° .
If `sec theta + tan theta = x," find the value of " sec theta`
What is the value of (1 + cot2 θ) sin2 θ?
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.