Advertisements
Advertisements
Question
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Solution
LHS = `(sec^2θ - sin^2θ)/tan^2θ`
= `(1/cos^2θ - sin^2θ)/(sin^2θ/cos^2θ)`
= `(1 - sin^2θcos^2θ)/((cos^2θ)/(sin^2θ/cos^2θ))`
= `(1 - sin^2θcos^2θ)/sin^2θ`
= `1/sin^2θ - (sin^2θcos^2θ)/(sin^2θ)`
= `cosec^2θ - cos^2θ`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ