English

Prove the Following Identity : Sec 2 θ − Sin 2 θ Tan 2 θ = Cos E C 2 θ − Cos 2 θ - Mathematics

Advertisements
Advertisements

Question

Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`

Sum

Solution

LHS = `(sec^2θ - sin^2θ)/tan^2θ`

= `(1/cos^2θ - sin^2θ)/(sin^2θ/cos^2θ)`

= `(1 - sin^2θcos^2θ)/((cos^2θ)/(sin^2θ/cos^2θ))`

= `(1 - sin^2θcos^2θ)/sin^2θ`

= `1/sin^2θ - (sin^2θcos^2θ)/(sin^2θ)`

= `cosec^2θ - cos^2θ`

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometric Identities - Exercise 21.1

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 21 Trigonometric Identities
Exercise 21.1 | Q 6.1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×