Advertisements
Advertisements
Question
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Solution
LHS = `(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ)`
= `((cos^3θ + sin^3θ)(cosθ - sinθ) + (cos^3θ - sin^3θ)(cosθ + sinθ))/((cosθ + sinθ)(cosθ - sinθ))`
= `(cos^4θ - cos^3θsinθ + sin^3θcosθ - sin^4θ + cos^4θ + cos^3θsinθ - sin^3θcosθ - sin^4θ)/(cos^2θ - sin^2θ)`
= `(2cos^4θ - 2sin^4θ)/(cos^2θ - sin^2θ) = (2(cos^4θ - sin^4θ))/(cos^2θ - sin^2θ)`
= `(2(cos^2θ + sin^2θ)(cos^2θ - sin^2θ))/((cos^2θ - sin^2θ))` = 2(`cos^2θ + sin^2θ`)
= 2 `(∵(cos^2θ + sin^2θ) = 1)`
OR
LHS = `(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ)`
= `((cosθ + sinθ)(cos^2θ + sin^2θ - cosθ sinθ))/(cosθ + sinθ) + ((cosθ - sinθ)(cos^2θ + sin^2θ + cosθsinθ))/((cosθ - sinθ))` (∵ `a^3 ± b^3 = (a ± b)(a^2 + b^2 ± ab`))
= `(cos^2θ + sin^2θ - cosθsinθ) + (cos^2θ + sin^2θ + cosθsinθ)`
= `1 - cosθsinθ + 1 + cosθsinθ` (∵ `cos^2θ + sin^2θ = 1`)
= 2
APPEARS IN
RELATED QUESTIONS
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A