Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
उत्तर
LHS = `(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ)`
= `((cos^3θ + sin^3θ)(cosθ - sinθ) + (cos^3θ - sin^3θ)(cosθ + sinθ))/((cosθ + sinθ)(cosθ - sinθ))`
= `(cos^4θ - cos^3θsinθ + sin^3θcosθ - sin^4θ + cos^4θ + cos^3θsinθ - sin^3θcosθ - sin^4θ)/(cos^2θ - sin^2θ)`
= `(2cos^4θ - 2sin^4θ)/(cos^2θ - sin^2θ) = (2(cos^4θ - sin^4θ))/(cos^2θ - sin^2θ)`
= `(2(cos^2θ + sin^2θ)(cos^2θ - sin^2θ))/((cos^2θ - sin^2θ))` = 2(`cos^2θ + sin^2θ`)
= 2 `(∵(cos^2θ + sin^2θ) = 1)`
OR
LHS = `(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ)`
= `((cosθ + sinθ)(cos^2θ + sin^2θ - cosθ sinθ))/(cosθ + sinθ) + ((cosθ - sinθ)(cos^2θ + sin^2θ + cosθsinθ))/((cosθ - sinθ))` (∵ `a^3 ± b^3 = (a ± b)(a^2 + b^2 ± ab`))
= `(cos^2θ + sin^2θ - cosθsinθ) + (cos^2θ + sin^2θ + cosθsinθ)`
= `1 - cosθsinθ + 1 + cosθsinθ` (∵ `cos^2θ + sin^2θ = 1`)
= 2
APPEARS IN
संबंधित प्रश्न
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.
Eliminate θ if x = r cosθ and y = r sinθ.