Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
उत्तर
LHS = `(tanθ + sinθ)/(tanθ - sinθ)`
= `(sinθ/cosθ + sinθ)/(sinθ/cosθ - sinθ) = (sinθ + sinθcosθ)/(sinθ + sinθcosθ)`
= `(sinθ(1 + cosθ))/sin(1 + cosθ) = (1 + cosθ)/(1 - cosθ)`
= `(1 + 1/secθ)/(1 - 1/secθ) = ((secθ + 1)/secθ)/((secθ - 1)/secθ)`
= `(secθ + 1)/(secθ - 1)`
APPEARS IN
संबंधित प्रश्न
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
If tan θ × A = sin θ, then A = ?