Advertisements
Advertisements
प्रश्न
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
उत्तर
LHS = `tan^3 θ/(1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ)`
= `tan^3 θ/sec^2 θ + cot^3 θ/(cosec^2 θ)`
= 1 + tan2θ = sec2θ; 1 + cot2θ = cosec2θ
= `sin^3 θ/cos^3 θ xx cos^2 θ + cos^3 θ/sin^3 θ xx sin^2 θ`
= `sin^3 θ/cos θ + cos^3 θ/sin θ`
= `(sin^4 θ + cos^4 θ)/(cos θ.sin θ)`
= `((sin^2θ)^2 + (cos^2θ)^2)/(sin θ.cos θ)`
= `((sin^2 θ + cos^2 θ)^2 - 2 sin^2 θ. cos^2 θ)/(sin θ.cos θ)` ...[a2 + b2 = (a + b)2 − 2ab]
= `((1)^2 - 2sin^2θ. cos^2θ)/(sin θ.cos θ)`
= `(1 - 2sin^2θ. cos^2θ)/(sinθ.cosθ)`
= `1/(sinθ.cosθ) - (2sin^2θ. cos^2θ)/(sinθ.cosθ)`
= secθ. cosecθ − 2 sinθ cosθ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
What is the value of (1 − cos2 θ) cosec2 θ?
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.