हिंदी

Prove that Tan^3 θ/( 1 + Tan^2 θ) + Cot^3 θ/(1 + Cot^2 θ) = Sec θ. Cosec θ - 2 Sin θ Cos θ. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`

योग

उत्तर

LHS = `tan^3 θ/(1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ)`

= `tan^3 θ/sec^2 θ + cot^3 θ/(cosec^2 θ)`

= 1 + tan2θ = sec2θ; 1 + cot2θ = cosec2θ

= `sin^3 θ/cos^3 θ xx cos^2 θ + cos^3 θ/sin^3 θ xx sin^2 θ`

= `sin^3 θ/cos θ + cos^3 θ/sin θ`

= `(sin^4 θ + cos^4 θ)/(cos θ.sin θ)`

= `((sin^2θ)^2 + (cos^2θ)^2)/(sin θ.cos θ)`

= `((sin^2 θ + cos^2 θ)^2 - 2 sin^2 θ. cos^2 θ)/(sin θ.cos θ)`   ...[a2 + b2 = (a + b)2 − 2ab]

= `((1)^2 - 2sin^2θ. cos^2θ)/(sin θ.cos θ)`

= `(1 - 2sin^2θ. cos^2θ)/(sinθ.cosθ)`

= `1/(sinθ.cosθ) - (2sin^2θ. cos^2θ)/(sinθ.cosθ)`

= secθ. cosecθ − 2 sinθ cosθ

= RHS

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 18: Trigonometry - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
अध्याय 18 Trigonometry
Exercise 2 | Q 49
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×