Advertisements
Advertisements
प्रश्न
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
उत्तर
LHS = `tan^2A - tan^2B`
= `sin^2A/cos^2A - sin^2B/cos^2B`
= `(sin^2Acos^2B - cos^2Asin^2B)/(cos^2Acos^2B)`
= `((1 - cos^2A)cos^2B - cos^2A(1 - cos^2B))/(cos^2Acos^2B)`
= `(cos^2B - cos^2Acos^2B - cos^2A + cos^2Acos^2B)/(cos^2Acos^2B)`
= `(cos^2B - cos^2A)/(cos^2Acos^2B)`
= `((1 - sin^2B) - (1 - sin^2A))/(cos^2Acos^2B)`
= `(sin^2A - sin^2B)/(cos^2Acos^2B)`
Hence `tan^2A - tan^2B = (cos^2B - cos^2A)/(cos^2A cos^2B) = (sin^2A - sin^2B)/(cos^2Acos^2B)`
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`