Advertisements
Advertisements
प्रश्न
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
उत्तर
LHS = `sin(90^circ - A).cos(90^circ - A)`
⇒ cosA.sinA
RHS = `tanA/(1 + tan^2A) = tanA/sec^2A = (sinA/cosA)/(1/cos^2A)`
⇒ RHS = `sinA/cosA . cos^2A = cosA.sinA`
Thus , LHS = RHS
⇒ `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Find the value of sin 30° + cos 60°.
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ