Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
उत्तर
LHS = `tan^2 A sec^2 B - sec^2 A tan^2 B`
`= tan^2 A + (1 + tan^2 B) - sec^2 A (tan^2 A)`
`= tan^2 A + tan^2 A tan^2 B - tan^2 B(1 + tan^2 A)` (`∵ sec^2 A = 4 tan^2 A`)
`= tan^2 A + tan^2 A tan^2 B - tan^2 B - tan^2 B tan^2 A`
`= tan^2 A - tan^2 B`
= RHS
APPEARS IN
संबंधित प्रश्न
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
If cos A + cos2 A = 1, then sin2 A + sin4 A =
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
If cosθ = `5/13`, then find sinθ.
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
If 2sin2θ – cos2θ = 2, then find the value of θ.