हिंदी

Find the Value of ` ( Sin 50°)/(Cos 40°)+ (Cosec 40°)/(Sec 50°) - 4 Cos 50° Cosec 40 °` - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`

उत्तर

`(sin 50°)/(cos 40 °)+ ( cosec 40° )/( sec 50°) - 4 cos 50°  cosec 40°`

`=(cos (90°- 50°))/(cos 40°) + (sec (90°- 40°))/(sec 50°)- 4 sin (90°-50°)  cosec 40°` 

`=(cos 40° )/( cos 40 °) + ( sec50°)/( sec 50°) - 4 sin 40 ° xx 1/ ( sin 40 °)`

=  1 + 1 - 4

= - 2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 3

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 3 | Q 32

संबंधित प्रश्न

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following identities:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Prove the following identities:

(1 + cot A – cosec A)(1 + tan A + sec A) = 2


Prove that:

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`


Prove the following identities:

cosec4 A (1 – cos4 A) – 2 cot2 A = 1


`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`


Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`


If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.


Write the value of tan10° tan 20° tan 70° tan 80° .


 Write True' or False' and justify your answer  the following : 

The value of sin θ+cos θ is always greater than 1 .


Prove the following identity :

secA(1 + sinA)(secA - tanA) = 1


Prove that:

tan (55° + x) = cot (35° – x)


Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1


Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×