Advertisements
Advertisements
प्रश्न
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
उत्तर
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
L.H.S = `(cot theta - cos theta)/(cot theta + cos theta)`
= `cos theta/sin theta - cos theta ÷ cos theta/sin theta + cos theta`
= `(cos theta - sin theta cos theta)/sin theta ÷ (cos theta + sin theta cos theta)/sin theta`
= `(cos theta(1 - sin theta))/sin theta ÷ (cos theta(1 + sin theta))/sin theta`
= `(cos theta(1 - sin theta))/sin theta xx sin theta/(cos theta(1 + sin theta))`
= `(1 - sin theta)/(1 + sin theta)`
R.H.S = `("cosec" - 1)/("cosec"+1)`
= `1/sin theta - 1 ÷ 1/sin theta+ 1`
= `(1 - sin theta)/sin theta ÷ (1 + sin theta)/sin theta`
= `(1 - sin theta)/sin theta xx sin theta/(1 + sin theta)`
= `(1 - sin theta)/(1 + sin theta)`
R.H.S = L.H.S ⇒ `(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
APPEARS IN
संबंधित प्रश्न
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that sec2θ − cos2θ = tan2θ + sin2θ
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.