Advertisements
Advertisements
प्रश्न
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
उत्तर
We have,
LHS = `(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
= `cos(90° - 20°)/(sin 20°) + cos(90° - 31°)/(sin 31°) - 8 xx (1/2)^2`
= `(sin 20°)/(sin 20°) + (sin 31°) /(sin 31°) - 8 xx 1/4`
= 1 + 1 - 2
= 2 -2
= 0
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
What is the value of (1 − cos2 θ) cosec2 θ?
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Find A if tan 2A = cot (A-24°).
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?