Advertisements
Advertisements
Question
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Solution
We have,
LHS = `(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
= `cos(90° - 20°)/(sin 20°) + cos(90° - 31°)/(sin 31°) - 8 xx (1/2)^2`
= `(sin 20°)/(sin 20°) + (sin 31°) /(sin 31°) - 8 xx 1/4`
= 1 + 1 - 2
= 2 -2
= 0
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
If tanθ `= 3/4` then find the value of secθ.
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`