English

Without Using Trigonometric Table, Prove that (Cos 70°)/(Sin 20°) + (Cos 59°)/(Sin 31°) - 8sin^2 30° = 0 - Mathematics

Advertisements
Advertisements

Question

Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.

Sum

Solution

We have,
LHS = `(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.

= `cos(90° - 20°)/(sin 20°) + cos(90° - 31°)/(sin 31°) - 8 xx (1/2)^2`

= `(sin 20°)/(sin 20°) + (sin 31°) /(sin 31°) - 8 xx 1/4`

= 1 + 1 - 2 
= 2 -2 
= 0 
= RHS
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 55.2
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×