Advertisements
Advertisements
Question
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Solution
LHS = (b - c)(r - p) = `(b - asin^2θ - bcos^2θ)(p sin^2θ + qcos^2θ - p)`
= `[b(1 - cos^2θ) - asin^2θ][p(sin^2θ - 1) + q cos^2θ]`
⇒ LHS = `[(b - a)sin^2θ][(q - p)cos^2θ] = (b - a)(q - p)sin^2θcos^2θ`
RHS = `(c - a)(q- r) = (asin^2θ + bcos^2θ - a)(q - p sin^2θ - qcos^2θ)`
= `[(b - a)cos^2θ][(q - p)sin^2θ] = (b - a)(q - p)sin^2θ.cos^2θ`
Thus , (b - c)(r - p) = (c - a)(q - r)
APPEARS IN
RELATED QUESTIONS
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
` tan^2 theta - 1/( cos^2 theta )=-1`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1