Advertisements
Advertisements
Question
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
Solution
LHS =` (1+ cos theta + sin theta)/(1+ cos theta-sin theta)`
=` ({(1+cos theta)+ sin theta}{(1+ cos theta)+ sin theta})/({(1+ cos theta )-sin theta}{(1+ cos theta )+ sin theta}) {"Multiplying the numerator and denominator by "(1 + costheta +sin theta}`
=`({(1+ cos theta)+ sin theta}^2)/({(1+ cos theta )^2-sin ^2 theta})`
=`(1+ cos^2 theta + 2 cos theta + sin ^2 theta + 2 sin theta (1+ cos theta))/(1+ cos^2 theta + 2 cos theta - sin ^2 theta)`
=`(2+2 cos theta + 2 sin theta (1+ cos theta))/(1+ cos ^2 theta + 2 cos theta -(1-cos^2 theta))`
=`(2(1+ cos theta)+2sin theta (1+ cos theta))/(2 cos^2 theta+2 cos theta)`
=`(2(1+ cos theta) (1+ sin theta))/( 2 cos theta (1+ cos theta))`
=`(1+sin theta)/cos theta`
= RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
(i)` (1-cos^2 theta )cosec^2theta = 1`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
Write the value of cosec2 (90° − θ) − tan2 θ.
The value of sin2 29° + sin2 61° is
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Choose the correct alternative:
Which is not correct formula?
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
Eliminate θ if x = r cosθ and y = r sinθ.