Advertisements
Advertisements
Question
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Solution
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = sqrt(sectheta - 1)/sqrt(sectheta + 1) + sqrt(sectheta + 1)/sqrt(sectheta - 1)`
= `(sqrt(sectheta - 1)sqrt(sectheta - 1) + sqrt(sectheta + 1)sqrt(sectheta + 1))/(sqrt(sectheta + 1)sqrt(sectheta - 1))`
= `((sqrt(sectheta - 1))^2 + (sqrt(sectheta + 1))^2)/sqrt((sectheta - 1)(sectheta + 1))`
= `(sectheta - 1 + sectheta + 1)/sqrt(sec^2theta - 1)`
= `(2sectheta)/sqrt(tan^2theta)`
= `(2sectheta)/tantheta`
= `(2 1/costheta)/(sintheta/costheta)`
= `2 1/sintheta`
= `2 cosectheta`
APPEARS IN
RELATED QUESTIONS
(secA + tanA) (1 − sinA) = ______.
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
tan θ cosec2 θ – tan θ is equal to
If 1 – cos2θ = `1/4`, then θ = ?
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?