Advertisements
Advertisements
प्रश्न
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
उत्तर
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = sqrt(sectheta - 1)/sqrt(sectheta + 1) + sqrt(sectheta + 1)/sqrt(sectheta - 1)`
= `(sqrt(sectheta - 1)sqrt(sectheta - 1) + sqrt(sectheta + 1)sqrt(sectheta + 1))/(sqrt(sectheta + 1)sqrt(sectheta - 1))`
= `((sqrt(sectheta - 1))^2 + (sqrt(sectheta + 1))^2)/sqrt((sectheta - 1)(sectheta + 1))`
= `(sectheta - 1 + sectheta + 1)/sqrt(sec^2theta - 1)`
= `(2sectheta)/sqrt(tan^2theta)`
= `(2sectheta)/tantheta`
= `(2 1/costheta)/(sintheta/costheta)`
= `2 1/sintheta`
= `2 cosectheta`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`(1 + cot^2 theta ) sin^2 theta =1`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
If sec θ + tan θ = x, then sec θ =
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1