मराठी

Prove That: √ Sec θ − 1 Sec θ + 1 + √ Sec θ + 1 Sec θ − 1 = 2 Cos E C θ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`

बेरीज

उत्तर

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = sqrt(sectheta - 1)/sqrt(sectheta + 1) + sqrt(sectheta + 1)/sqrt(sectheta - 1)`

= `(sqrt(sectheta - 1)sqrt(sectheta - 1) + sqrt(sectheta + 1)sqrt(sectheta + 1))/(sqrt(sectheta + 1)sqrt(sectheta - 1))`

= `((sqrt(sectheta - 1))^2 + (sqrt(sectheta + 1))^2)/sqrt((sectheta - 1)(sectheta + 1))`

= `(sectheta - 1 + sectheta + 1)/sqrt(sec^2theta - 1)`

= `(2sectheta)/sqrt(tan^2theta)`

= `(2sectheta)/tantheta` 

= `(2 1/costheta)/(sintheta/costheta)`

= `2 1/sintheta`

= `2 cosectheta`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) Abroad Set(2)

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`


If sec A + tan A = p, show that:

`sin A = (p^2 - 1)/(p^2 + 1)`


`(1 + cot^2 theta ) sin^2 theta =1`


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ. 


If sec θ + tan θ = x, then sec θ =


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity : 

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`


Evaluate:

`(tan 65^circ)/(cot 25^circ)`


If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×