Advertisements
Advertisements
प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
उत्तर
L.H.S
= `(cosec θ – cot θ)^2`
= `(1/sintheta - costheta/sintheta)^2`
= `(1-costheta)^2/(sin^2 theta)`
= `(1-cos theta)^2/(1-cos^2theta)`
= `((1-costheta)(1-costheta))/((1-costheta)(1+cos theta)) `
= `(1-cos theta)/(1+costheta)`
= R.H.S
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
Write the value of tan10° tan 20° tan 70° tan 80° .
Write the value of cos1° cos 2°........cos180° .
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Find the value of ( sin2 33° + sin2 57°).
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
sin2θ + sin2(90 – θ) = ?
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that sec2θ – cos2θ = tan2θ + sin2θ
If 2sin2β − cos2β = 2, then β is ______.
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
If tan α + cot α = 2, then tan20α + cot20α = ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.