मराठी

If X = A Sec θ Cos ϕ, Y = B Sec θ Sin ϕ And Z = C Tan θ, Show that X^2/A^2 + Y^2/B^2 - X^2/C^2 = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`

उत्तर

Given:

`x = a sec theta cos phi`

`=> x/a = sec theta  cos phi`   ........(1)

`y = b sec theta sin phi`

`=> y/b = sec theta sin phi`

`=> y/b = sec theta sin phi`

`=> zx/c =  tan theta`

We have to prove that `x^2/a^2  + y^2/b^2 - z^2/c^2  = 1`

Squaring the above equations and then subtracting the third from the sum of the first two, we have

`(x/a)^2 + (y/b)^2  - (z/c)^2 = (sec theta cos phi)^2 + (sec theta sin phi)^2 - (tan theta)^2`

`=> x^2/ a^2 + y^2/b^2 - z^2/c62 = sec^2 theta cos^2 phi + sec^2 theta sin^2 phi - tan^2 theta` 

`=> x^2/a^2 + y^2/b^2 - z^2/c^2 = (sec^2 theta cos^2 phi + sec^2 theta sin&2 phi) - tan^2 theta`

`=> x^2/a^2 + y^2/b^2 - z^2/c^2 = sec^2 theta(cos^2 phi + sin^2 phi) - tan^2 theta`

`=> x^2/a^2 + y^2/b^2 - z^2/c^2= sec^2 theta (1) = tan^2 theta`

`=> x^2/a^2 + y^2/b^2 - z^2/c^2 = sec^2 theta - tan^2 theta`

`=> x^2/a^2 + y^2/b^2 - z^2/c^2 = 1`

Hence proved.

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 87 | पृष्ठ ४७

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.


Without using trigonometric tables evaluate

`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`


Prove the following trigonometric identities.

`(cos^2 theta)/sin theta - cosec theta +  sin theta  = 0`


Prove the following trigonometric identities

tan2 A + cot2 A = sec2 A cosec2 A − 2


Prove the following identities:

cosec A(1 + cos A) (cosec A – cot A) = 1


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`


`(cos theta  cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`


Write the value of `3 cot^2 theta - 3 cosec^2 theta.`


If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


Prove the following identity :

tanA+cotA=secAcosecA 


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ


Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×