Advertisements
Advertisements
प्रश्न
Prove the following identity :
tanA+cotA=secAcosecA
उत्तर
tanA+cotA=secAcosecA
Consider LHS = tanA + cotA
tanA + cotA = `sinA/cosA + cosA/sinA = (sin^2A + cos^2A)/(sinA.cosA)`
⇒ `tanA + cotA = 1/(sinA.cosA) = 1/sinA 1/cosA`
⇒ tanA + cotA = cosecA.secA = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.