Advertisements
Advertisements
प्रश्न
Prove the following identity :
tanA+cotA=secAcosecA
उत्तर
tanA+cotA=secAcosecA
Consider LHS = tanA + cotA
tanA + cotA = `sinA/cosA + cosA/sinA = (sin^2A + cos^2A)/(sinA.cosA)`
⇒ `tanA + cotA = 1/(sinA.cosA) = 1/sinA 1/cosA`
⇒ tanA + cotA = cosecA.secA = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ