हिंदी

Prove That: √ Sec θ − 1 Sec θ + 1 + √ Sec θ + 1 Sec θ − 1 = 2 Cos E C θ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`

योग

उत्तर

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = sqrt(sectheta - 1)/sqrt(sectheta + 1) + sqrt(sectheta + 1)/sqrt(sectheta - 1)`

= `(sqrt(sectheta - 1)sqrt(sectheta - 1) + sqrt(sectheta + 1)sqrt(sectheta + 1))/(sqrt(sectheta + 1)sqrt(sectheta - 1))`

= `((sqrt(sectheta - 1))^2 + (sqrt(sectheta + 1))^2)/sqrt((sectheta - 1)(sectheta + 1))`

= `(sectheta - 1 + sectheta + 1)/sqrt(sec^2theta - 1)`

= `(2sectheta)/sqrt(tan^2theta)`

= `(2sectheta)/tantheta` 

= `(2 1/costheta)/(sintheta/costheta)`

= `2 1/sintheta`

= `2 cosectheta`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) Abroad Set(2)

संबंधित प्रश्न

As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.


Prove the following trigonometric identities.

`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then 


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


Prove that sin6A + cos6A = 1 – 3sin2A . cos2A


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


Show that tan4θ + tan2θ = sec4θ – sec2θ.


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


tan θ × `sqrt(1 - sin^2 θ)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×