Advertisements
Advertisements
प्रश्न
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
उत्तर
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = sqrt(sectheta - 1)/sqrt(sectheta + 1) + sqrt(sectheta + 1)/sqrt(sectheta - 1)`
= `(sqrt(sectheta - 1)sqrt(sectheta - 1) + sqrt(sectheta + 1)sqrt(sectheta + 1))/(sqrt(sectheta + 1)sqrt(sectheta - 1))`
= `((sqrt(sectheta - 1))^2 + (sqrt(sectheta + 1))^2)/sqrt((sectheta - 1)(sectheta + 1))`
= `(sectheta - 1 + sectheta + 1)/sqrt(sec^2theta - 1)`
= `(2sectheta)/sqrt(tan^2theta)`
= `(2sectheta)/tantheta`
= `(2 1/costheta)/(sintheta/costheta)`
= `2 1/sintheta`
= `2 cosectheta`
APPEARS IN
संबंधित प्रश्न
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
Show that tan4θ + tan2θ = sec4θ – sec2θ.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
tan θ × `sqrt(1 - sin^2 θ)` is equal to: