Advertisements
Advertisements
प्रश्न
tan θ × `sqrt(1 - sin^2 θ)` is equal to:
विकल्प
cos θ
sin θ
tan θ
cot θ
उत्तर
sin θ
Explanation:
`tan θ xx sqrt(1 - sin^2 θ) ...{sin^2 θ + cos^2 θ = 1, ∴ cos^2 θ = 1 - sin^2 θ}`
= `tan θ xx sqrt(cos^2 θ)`
= tan θ × cos θ
= `(sin θ)/(cos θ)` × cos θ
= sin θ
APPEARS IN
संबंधित प्रश्न
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Write the value of cos1° cos 2°........cos180° .
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`