Advertisements
Advertisements
प्रश्न
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
उत्तर
\[\cos^2 23°- \sin^2 67°\]
\[ = \sin^2 \left( 90°- 23°\right) - \sin^2 67°\]
\[ = \sin^2 67° - \sin^2 67°\]
\[ = 0\]
Which is not positive, the given statement is false.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α