Advertisements
Advertisements
प्रश्न
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
उत्तर १
LHS = ` sin theta (1+ tan theta ) + cos theta ( 1+ cot theta )`
=` sin theta + sin theta xx (sin theta)/(cos theta) + cos theta +cos theta xx (cos theta)/( sin theta)`
= `( cos theta sin ^2 theta + sin^3 theta + cos^2 theta sin theta + cos^3 theta)/(cos theta sin theta)`
=`((sin^3 theta + cos^3 theta)+(cos theta sin ^2 theta + cos ^2 theta sin theta))/(cos theta sin theta)`
=`((sin theta + cos theta )(sin^2 theta - sin theta cos theta + cos ^2 theta )+ sin theta cos theta ( sin theta + cos theta))/(cos theta sin theta)`
=`((sin theta + cos theta )( sin^2 theta + cos^2 theta - sin theta cos theta + sin theta cos theta))/(cos theta sin theta)`
=`((sin theta + cos theta)(1))/(cos theta sin theta)`
= `(sin theta)/(cos theta sin theta) + (cos theta)/( cos theta sin theta)`
=`1/cos theta + 1/ sin theta`
=` sec theta + cosec theta`
=RHS
उत्तर २
LHS = ` sin theta (1+ tan theta ) + cos theta ( 1+ cot theta )`
=` sin theta + sin theta xx (sin theta)/(cos theta) + cos theta +cos theta xx (cos theta)/( sin theta)`
= `( cos theta sin ^2 theta + sin^3 theta + cos^2 theta sin theta + cos^3 theta)/(cos theta sin theta)`
=`((sin^3 theta + cos^3 theta)+(cos theta sin ^2 theta + cos ^2 theta sin theta))/(cos theta sin theta)`
=`((sin theta + cos theta )(sin^2 theta - sin theta cos theta + cos ^2 theta )+ sin theta cos theta ( sin theta + cos theta))/(cos theta sin theta)`
=`((sin theta + cos theta )( sin^2 theta + cos^2 theta - sin theta cos theta + sin theta cos theta))/(cos theta sin theta)`
=`((sin theta + cos theta)(1))/(cos theta sin theta)`
= `(sin theta)/(cos theta sin theta) + (cos theta)/( cos theta sin theta)`
=`1/cos theta + 1/ sin theta`
=` sec theta + cosec theta`
=RHS
APPEARS IN
संबंधित प्रश्न
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2